

Current Transducer LT 505-S/SP3

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

16150

Flectrical data

Electrical data							
I _{PN}	Primary nominal r.m.s. current		500			A	
I _P	Primary current, measuring range		0 ± 1000			Α	
\mathbf{R}_{M}	Measuring resistance @ $T_A =$		$T_{A} = 0$	$70^{\circ}\text{C} \mid \mathbf{T}_{A} = 85^{\circ}\text{C}$;
			$\mathbf{R}_{M\;min}^{N}$	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$	R _{M min}	${\bf R}_{\rm M\; max}$	
	with ± 15 V	@ ± 500 A _{max}	0	60	0	58	Ω
		@ ± 1000 A _{max}	0	17	0	15	Ω
	with ± 24 V	@ ± 500 A _{max}	10	115	15	113	Ω
		@ ± 1000 A _{max}	10	45	15	43	Ω
I _{SN}	Secondary nominal r.m.s. current		143	3		m A	
K _N	Conversion ratio			1:3	3500		
V _c	Supply voltage (± 10 %)			± 1	5 2	4	V
I _c	Current consumption			30(@±24	V)+ I s	mA
\mathbf{V}_{d}	R.m.s. voltage for AC isc	olation test, 50 Hz, 1 r	mn	6		J	kV
V	R.m.s. rated voltage 1), s	safe separation		175	50		V

Accuracy - Dynamic performance data

\mathbf{e}_{L}^{G}	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity		± 0.6 < 0.1		% %
Ι _ο Ι _{οτ}	Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Thermal drift of $\mathbf{I}_{\rm O}$	- 40°C + 85°C	Тур ± 0.3	Max ± 0.6 ± 0.8	m A m A
t _r di/dt f	Response time ²⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (-1 dB)		< 1 > 50 DC 1	150	μs A/μs kHz

basic isolation

General data

T _A	Ambient operating temperature Ambient storage temperature		- 40 + 85 - 50 + 100	°C
R _s	Secondary coil resistance @	$T_A = 70^{\circ}C$	25	Ω
m	Mass	$T_A = 85^{\circ}C$	27 1.0	Ω kg
	Standards		EN 50155	

Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

2) With a di/dt of 100 A/µs.

500 A

Features

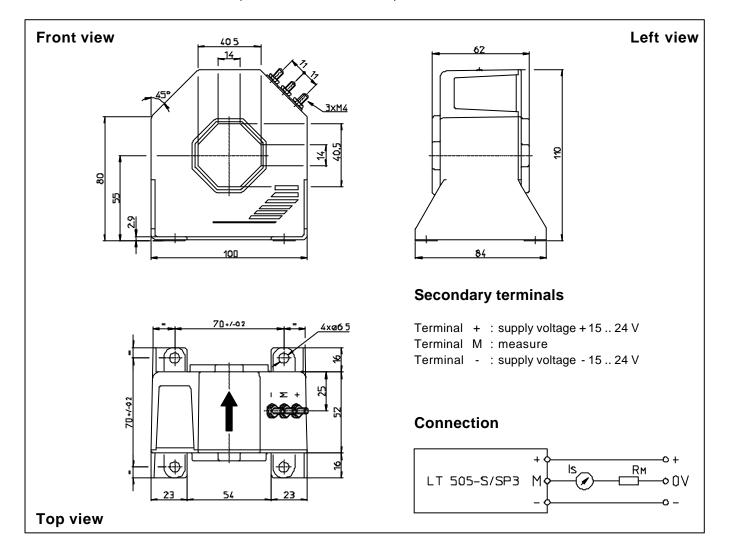
- Closed loop (compensated) current transducer using the Hall effect
- · Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_p = 0.. \pm 1000 \text{ A}$
- $\mathbf{K}_{N} = 1:3500$
- T_A = -40°C .. +85°C
- · Labeled with customer specification number
- Connection to secondary circuit on M4 threaded studs
- Potted
- · Railway equipment.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift · Optimized response time
- Wide frequency bandwidth
- · No insertion losses
- High immunity to external interference
- · Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

3500

Dimensions LT **505-S/SP3** (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary Fastening torque
- ± 0.5 mm
- 4 holes \varnothing 6.5 mm
- 40.5 x 40.5 mm
- M4 threaded studs
 1.2 Nm or .88 Lb. Ft.

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.