NT1000C-S/SP3 Current Transducer Α **Applications** For the electronic measurement of currents: AC, DC IMPL.,etc.,with galvanic isolation between the primary (high power) and the secondary (electronic) circuits. | Advantages | Applications | Standards | | |--------------------------|-------------------------------|-----------|--| | Excellent accuracy | AC variable speed drives | EN50178 | | | Very good linearity | Servo motor drives | EN50155 | | | Low temperature drift | Battery supplied applications | | | | Wide frequency bandwidth | converter /inverter | | | | Optimized response time | UPS/SVG | | | | | N | lain electrical data | | |--|----------------------------------|----------------------|---| | I _{PN} (A) | Primary nomina lcurrent rms | | 1000A | | I _P (A) | Primary current measuring range | | 0∼±2400 | | | Turns ratio | | 1:5000 | | V _C (V) | Supply voltage | | DC± (15~24)×(1±5%)V | | I _{SN} (mA) | A) Secondary nominal current rms | | 200mA | | R_{M} (Ω) | (Ω) Measuring resistance | | | | | R_{M} min | R _M max | | | with ±15V @±1000A max: | Ω | 15Ω | | | @±1200A max: | 0Ω | 7Ω | | | with ±24V @±1000A max: | Ω | 50Ω | | | @±2000A max: | 0Ω | 7Ω | | | I _C (@±24V) | Current con | sumption | ≤30mA+ Secondary output current I _{SN} | | Isolation test: Between the primary circuit to the secondary circuit | | 13.4kVrms/50Hz/1min | | | Case material | | UL94V-0 | | | Accuracy - Dynamic performance data | | | | |---|------------------|--------|--| | δ i
(@I _{PN} ,T _A =25℃) | Overall Accuracy | ≤±0.4% | | | δ L
(@I _{PN} ,T _A =25°C) | Linearity error | <0.1% | | | $I_{\rm O}$ (@I _P =0, T _A =25°C) | Offset current | ≤±0.5mA | |--|--|--------------------| | I _{OT} | Thermal drift | ≤±1mA (-40°~~+85°) | | $t_{\rm r}$ | Response time to 90% of I _{PN} step | ≤1us | | di/dt | di/dt Accurately followed | >100A/us | | BW | Frequency bandwidth(-1dB) | DC100kHz | | | General data | | |-----------------|-------------------------------|-----------| | Та | Ambient operating temperature | -40℃~+85℃ | | Ts | Ambient storage temperature | -45℃~+90℃ | | D _{CI} | Clearance distance mm | 45 | | D _{CP} | Creepage distance mm | 64 | | | СТІ | >175 | | | Mass | ≤900g | ## | Mechanical | characteristics | Remark | |------------------------------------|--|--| | General tolerance | ±1 mm | | | Transducer fastening (Recommended) | 4 hole ø6.5mm
4 screws M6 | 1. The sensor output I _{PN} is positive when IP flows in the direction of the arrow. | | Recommended fastening torque | 4.5 N • m | Shielded wire recommended for secondary connection, cable shielding layer close to the terminals can be connected to housing, negative power | | Bus bar(Recommended) | ø 42mm | terminal or GND. | | Connection of secondary | 4 M5 threaded studs
Faston 6.3×0.8 | | | Recommended fastening torque | 2.2 N • m | |