

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD.

Specification for Approval

SEMIC Trade s. r.o. Customer

LEAD-FREE METAL FILM FIXED RESISTORS **Product Name:**

Part Name MFR 0.6WS $\pm 0.1\%$ 1.5 Ω 50PPM

Part No. MFR006B150KA10

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Chen Nana	Chen Haiyan	ST-02-008	2	2016.05.28	1/10

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD.

Contents

Introduction	Page
1.0 Scope	4
2.0 Ratings & Dimension	4
3.0 Construction	4
4.0 Resistor marked	5
5.0 Derating Curve	5~6
6.0 Performance Specification	6~7
7.0 Explanation of Part No. System	7~9
8.0 Ordering Procedure	9
9.0 Standard Packing	9
10.0 Precaution for storage/Transportation	10

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Chen Nana	Chen Haiyan	ST-02-008	2	2016.05.28	2/10

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD.

File Name MFR 0.6	me: 0.6WS ±0.1% 1.5Ω 50PPM Date 2016.05.28		Edition No.	2		
	Amendmer	nt Record		Signature		
Edition	Prescription of amendment	Amend Page	Amend Date	Amended by	Checked by	
2	Modify the Standard Packing	9/10	2016.05.28	Chen Haiyan	Chen Nana	

App	roved	Checked	Prepared	File NO.	Edition	Date	Page
Willia	m Zhao	Chen Nana	Chen Haiyan	ST-02-008	2	2016.05.28	3/10

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD.

1.0 Scope:

This specification for approve relates to Lead-Free Metal Film Fixed Resistors manufactured by UNIOHM.

2.0 Ratings & Dimension:

Time	Dimension(mm)			Max	Max	Dielectric	Talaranas	Resistance	
Type	D	L	d ±0.05	H ±3	Working Voltage	Overload Voltage	Withstanding Voltage	Tolerance	Range
MF 0.6WS	2.2±0.5	6.5±1.0	0.54	26	0.94V	2.37V	250V	±0.1%	1.5 Ω

3.0 Construction:

No.	Name	Material			
1	Basic Body	Rod type ceramics			
2	Resistor	Metal Film			
3	End Cap	Cold steel plated with copper/tin			
4	Lead Wire	Tin solder coated copper wire			
5	Joint	By Welding			
6	Coating	(1). Celluloid paint (2) Insulated Resin			
7	Color Code	Light Green Epoxy resin			

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Chen Nana	Chen Haiyan	ST-02-008	2	2016.05.28	4/10

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD.

ISO14001

4.0 Resistor marked:

Resistors shall be marked with color coding

Colors shall be in accordance with JIS C 0802

4.1 Label:

Label shall be marked with following items:

- (1) Type and style
- (2) Nominal resistance
- (3) Resistance tolerance
- (4) Quantity
- (5) Lot number
- (6) PPM

Example:

Example.						
METAL FILM FIXED RESISTORS						
WATT: 0.6WS	VAL:1.5 Ω					
Q'TY: 5,000	TOL: 0.1%					
LOT: 5021548	PPM: 50					

5.0 Derating Curve:

Resistors shall have a power rating based on continuous load operation at an ambient temperature from -55 $^{\circ}$ C to 70 $^{\circ}$ C. For temperature in excess of 70 $^{\circ}$ C, the load shall be derate as shown in figure 1

Figure1

5.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

Where: RCWV = Rated DC or RMS AC continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.) R= nominal resistance (OHM)

The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is less.

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Chen Nana	Chen Haiyan	ST-02-008	2	2016.05.28	5/10

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD.

6.0 Performance Specification:							
Characteristic	Limits	Test Method (JIS-C-5201&5202)					
Temperature Coefficient	±50PPM/°CMax	4.8 natural resistance changes per temp. Degree centigrade $R_2\text{-}R_1 \\ \hline $					
Short-time overload	Resistance change rate must be in $\pm (0.5\% + 0.05 \Omega)$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV for 5 seconds.					
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90°metallic v-block and shall be tested at ac potential respectively specified in the above list for 60-70 seconds.					
Pulse overload	Resistance change rate must be in \pm (1%+0.05 Ω), and no mechanical damage.	4.28 Resistance change after 10,000 cycles (1 second "ON", 25 seconds "OFF") at 4 times RCWV.					
Resistance to soldering heat	Resistance change rate must be in \pm (1%+0.05 Ω), and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in $260^{\circ}\text{C}\pm5^{\circ}\text{C}$ solder for 10 ± 1 seconds.					
Resistance to solvent	No deterioration of protective coatings & markings	4.29 Specimens shall be immersed in a bath of alcohol completely for 3 min. With ultrasonic					
Terminal strength	No evidence of mechanical damage	4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of abou 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.					
Solderability	95% coverage Min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245 $^{\circ}$ C $\pm 3^{\circ}$ C Dwell time in solder: 2~3seconds.					
Temperature cycling	Resistance change rate must be in $\pm (1\%+0.05\Omega)$, and no mechanical damage.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Load life in humidity	±1.5%	7.9 resistance change after 1,000 hours (1.5 hours "ON",0.5 hour "OFF") at RCWV in a humidity test chamber controlled at 40°C ±2°C and 90 to 95% relative humidity.					
Load life	±1.5%;	4.25.1 permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $70\%\pm2\%$ ambient.					

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Chen Nana	Chen Haiyan	ST-02-008	2	2016.05.28	6/10

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD.

7.0 Explanation of Part No. System:

The standard Part No. includes 14 digits with the following explanation:

7.1 Coated type, the 1st to 3rd digits are to indicate the product type and 4th digit is the special feature.

Example: MFRF= Metal Film Fixed Resistors Non-flame type;

7.2 5th~6th digits:

7.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers,

The following codes are used; and please refer to the following chart for detail:

W=Normal Size; S=Small Size; U=Extra Small Size; "1" ~ "G" to denotes "1" ~ "16" as Hexadecimal:

1/16W~1/2W (<1W)

Wattage	1/2	1/3	1/4	1/5	1/6	1/8	0.6	0.4
Normal Size	W2	W3	W4	W5	W6	W8	/	1
Small Size	S2	S3	S4	S5	S6	S8	06	1
Extra Small Size	U2	U3	U4	U5	U6	U8	/	04

1W~16W (≥1W)

Wattage	1	2	3	5	7	8	9	10	15
Normal Size	1W	2W	3W	5W	7W	8W	9W	AW	FW
Small Size	1S	2S	3S	5S	7S	8S	9S	AS	FS
Extra Small Size	1U	2U	3U	5U	7U	8U	9U	AU	FU

7.2.2 For power rating less than 1 watt, the 5th digit will be the letters W, S or U to represent the size required & the 6th digit will be a number or a letter code.

Example: WA=1/10W; 06=0.6W-S

7.2.3 For power of 1 watt to 16 watt, the 5th digit will be a number or a letter code and the 6th digit will be the letters of W, S or U.

Example: AW=10W; 3S=3W-S

7.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

F=±1% G=±2% J=±5%

- 7.4 The 8th to 11th digits is to denote the Resistance Value.
- 7.4.1 For the standard resistance values of E-24 series, the 8th digit is "0", the 9th & 10th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following;

For the standard resistance values of E-96 series, the 8th digit to the 10th digits is to denote the

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Chen Nana	Chen Haiyan	ST-02-008	2	2016.05.28	7/10

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD.

significant figures of the resistance and the 11th digit is the 11th digit is the zeros following.

7.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

 $0=10^{0}$ $1=10^{1}$ $2=10^{2}$ $3=10^{3}$ $4=10^{4}$ $5=10^{5}$ $6=10^{6}$ $J=10^{-1}$ $K=10^{-2}$ $L=10^{-3}$ $M=10^{-4}$

7.4.3 The 12th, 13th & 14th digits.

The 12th digit is to denote the Packaging Type with the following codes:

A=Tape/Box (Ammo pack) B=Bulk/Box T=Tape/Reel P=Tape/Box of PT-26 products

7.4.4 The 13th digit is normally to indicate the Packing Quantity of Tape/Box & Tape/Reel packaging types. Except for Chip products Bulk packing, this digit should be filled "0" or other products with Bulk/Box packing requirement. The following letter code and number is to be used for some packing quantities:

A=500pcs B=2500pcs 1=1000pcs 2=2000pcs

7.4.5 For the FORMED type products, the 13th & 14th digits are used to denote the forming types of the product with the following letter codes:

MF=M-type with flattened lead wire F0= F-type
MK= M-type with kinked lead wire F1= F1-type

ML= M-type with normal lead wire F2= F2-type

MC= M type with kinked lead and narrow pitch wire F3= F3-type

7.4.6 For some items, the 14th digit alone can use to denote special features of additional information with the following codes:

P=Panasert type 1 1=Avisert type 1 2=Avisert type 2

3=Avisert type 3 A=Cutting type CO 1/4W-A type B= Cutting type CO 1/4W-B type

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Chen Nana	Chen Haiyan	ST-02-008	2	2016.05.28	8/10

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD.

9.0 Standard Packing:

Dimension of Reel (mm)

Part No.	О	P	A±5	B±5	C±5	Qty/Box
MF 0.6WS	52±1	5±0.3	73	28	255	1,000pcs

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Chen Nana	Chen Haiyan	ST-02-008	2	2016.05.28	9/10

UNIROYAL ELECTRONICS INDUSTRY (KUNSHAN) CO., LTD.

10.0 Precaution for storage/Transportation:

10.1 UNIOHM recommend the storage condition temperature: 15° ~35 $^{\circ}$, humidity :25%~75%. (Put condition for individual product)

Even under UNIOHM recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.

- 10.2 Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.

 Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 10.3 Product performance and soldered connections may deteriorate if the products are stored in the following places:
 - a. Storage in high Electrostatic
 - b. Storage in direct sunshine rain and snow or condensation
 - c. Where the products are exposed to sea winds or corrosive gases, including Cl_2 , H_2S_3 NH_3 , SO_2 , NO_2 .

Approved	Checked	Prepared	File NO.	Edition	Date	Page
William Zhao	Chen Nana	Chen Haiyan	ST-02-008	2	2016.05.28	10/10