UniOhm

$oldsymbol{C}$ $oldsymbol{O}$ $oldsymbol{N}$ $oldsymbol{F}$ $oldsymbol{I}$ $oldsymbol{D}$ $oldsymbol{E}$ $oldsymbol{N}$ $oldsymbol{T}$ $oldsymbol{I}$ $oldsymbol{A}$ $oldsymbol{N}$ $oldsymbol{E}$ $oldsymbol{N}$ $oldsymbol{T}$ $oldsymbol{I}$ $oldsymbol{A}$ $oldsymbol{N}$ $oldsymbol{I}$ $oldsymbol{N}$ $oldsymbol{I}$ $oldsymbol{N}$ $oldsymbol{I}$ $oldsymbol{N}$ $oldsymbol{I}$ $oldsymbol{N}$ $oldsymbol{I}$ $oldsymbol{N}$ $oldsymbol{I}$ $oldsymbol{N}$ $oldsymbol{N$

SPECIFICATION FOR APPROVAL

SEMIC TRADE S.R.O

Description: Thick Film Chip Resistor Array (Lead Free)

Uniohm Part no.:

4D03WGxxxxxT5E (RMC 1/16W (4D03) +/-1%, +/-5% T/R-5,000)

Approved by							

Parts corresponding to RoHS Compliant: 2005-Apr.-1

Approved	Checked	Prepared
Mr. Jack Lin	Mr. S. Polthanasan	Ms.P. Supatta

Issue Date: 2017/11/10

	CHANGE NOTIFICATION HISTORY								
Version	Version Date of Version History Rem								
1	2017/11/10	Thick Film Chip Resistor Arrays 4D03 series							
	+								

Customer: SEMIC TRADE S.R.O Part No.: 4D03WGxxxxxT5E

1. Scope:

This specification for approval relates to Thick Film Chip Resistor Array (Lead Free) manufactured by UniOhm 's specifications.

2. Type designation:

The type designation shall be in the following form:

Ex.

Type	Power Rating	Resistance tolerance	Nominal Resistance
RMC 4D03	0.0625W (1/16W)	F,J	10Ω

3. Ratings:

Туре	RMC 4D03 (8Pin4R)
Power Rating	0.0625W at 70°C
Max. Working Voltage	50 V
Max. Overload Voltage	100 V
Dielectric Withstanding Voltage	300 V
Temperature Range	-55°C ~ +155°C
Ambient Temperature	70 ℃

3.1 Power rating:

Resistors shall have a power rating based on continuous load operation at an ambient temperature of 70 $^\circ\! C$. For temperature in excess of 70 $^\circ\! C$, The load shall be derate as shown in figure 1.

Figure 1

3.2 Nominal Resistance

-60

-20

Effective figures of nominal resistance shall be in accordance with E-24 and E-96 series E-96 series for 1 % and E-24 series for 2 % and 5 %

Ambient temperature (°C)

120

140

4. Construction:

5. Power rating and dimensions

Dimension:

		Dimension (mm)					
Type	$L \pm 0.20$	$L \pm 0.20$ $W \pm 0.20$ $H \pm 0.10$		$\ell 1 \pm 0.15$ $\ell 2 \pm 0.15$ $P \pm 0.10$ $Q \pm$			$Q \pm 0.15$
RMC 4D03	3.20	1.60	0.50	0.30	0.40	0.8	0.50

Power Rating:

Tomo	Power Rating	Tolerance	Resistance	Standard
Туре	at 70 $^{\circ}\mathrm{C}$	%	Range	Resistance values
RMC 4D03	0.0625 W	± 1	$10\Omega\sim 1M\Omega$	E-96
KIVIC 4D03	(1/16W)	± 5	$1\Omega\sim 1M\Omega$	E-24

6. Marking:

6.1 Resistors

A. Marking for E-96 series in 4D03 size: 4 Digits

*The first 3 digits are singnificant figures of resistance and the 4th digit denoted number of zeros.

Ex. 1003 100KΩ

*For ohmic values below 10 Ω , letter"R" is for decimal point.

Ex. 1R80 1.8Ω

B. Marking for E-24 series in 4D03 size: 3 Digits

*The first 2 digits are singnificant figures of resistance and the 3rd digit denoted number of zeros.

Ex. 103 10KΩ

*For ohmic values below 10 Ω , letter"R" is for decimal point.

Ex. R68 0.68Ω

6.2 Labels

Label shall be marked with the following item:

- A. Nominal Resistance and Resistance Tolerance
- B. Power Rating and Size
- C. Quantity
- D. Part No.
- E. P.O.No.
- F. Lot No.

Ex.

LOT NO.: 6050008 4D03WGJ0100T5E

Remark: Label is 10R, value is 10Ω , marking is 100

	Thick Film Chip Re	esistor Array (Lead Free)
7. Performan	ce specification :	
Characteristics	Limits	Test Methods (JIS C 5201-1)
Insulation resistance	$1,\!000~\mathrm{M}\Omega$ or more	4.6 Apply 500V DC between protective coating and termination for 1 min, then measure
Dielectric withstanding	No evidence of flashover mechanical damage, arcing or insulation break down	4.7 Apply 500V AC between protective coating and termination for 1 minute
Temperature coefficient	$<10\Omega$: $\pm 400 \text{ PPM/°C}$ $\ge 10\Omega$: $\pm 200 \text{ PPM/°C}$	4.8 Natural resistance change per temp. degree centigrade. R2-R1 x 10 ⁶ (PPM/°C) R1(t2-t1) R1: Resistance value at room temperature (t1) R2: Resistance value at room temp. plus 100 °C (t2)
Short time overload	Resistance change rate is $\pm (2.0\% + 0.1\Omega)$ Max.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV for 5 seconds
Solderability	95 % coverage Min.	Wave Solder: Test temperature of solder: 245°C ±3°C dipping time in solder: 2-3 seconds.
	Go up tin rate bigger than half of end pole.	Refolw: 250 250 230°C
Soldering Heat	Resistance change rate is: ±(1%+0.05Ω) Max.	4.18 Dip the resistor into a solder bath having a temperature of 260°C±3°C and hold it for 10±1 seconds.

$3 +155^{\circ}\text{C} \pm 2^{\circ}\text{C}$ 30 min	
Characteristics Limits (JIS C 5201-1) Temperature cycling Resistance change rate is $\pm (1.0\% + 0.05\Omega)$ Max. Temperature Time cycling Temperature cycling Resistance change rate is $\pm (1.0\% + 0.05\Omega)$ Max. 1 -55°° \pm 3°° \pm 30 min and a second state of the cycling and t	
Temperature cycling Resistance change rate is $\pm (1.0\% + 0.05\Omega)$ Max. Resistance change rate is $\pm (1.0\% + 0.05\Omega)$ Max. $2 Room temp. 10 \sim 1$ $3 + 155^{\circ}C \pm 2^{\circ}C 30 min$ $4 Room temp. 10 \sim 1$ 7.9 Resistance change after 1,000 hours (1.5 hours "on", 0.5 hour "off") at RCWV in a humidity chamber controlled at $40^{\circ}C \pm 2^{\circ}C$ and 90 to 95 % relative humidity Resistance change rate is $\pm (3.0\% + 0.1\Omega)$ Max. Resistance change rate is $\pm (3.0\% + 0.1\Omega)$ Max. Resistance change rate is $\pm (3.0\% + 0.1\Omega)$ Max. Resistance change rate is $\pm (3.0\% + 0.1\Omega)$ Max. Resistance change rate is $\pm (3.0\% + 0.1\Omega)$ Max. Resistance change rate is $\pm (3.0\% + 0.1\Omega)$ Max. 4.25.1 Permanent resistance change after 1,000 operating at RCWV, with duty cycle of (1.5 hours"on", 0.5 hour"off") at $70^{\circ}C \pm 2^{\circ}C$ at 4.33 Twist of Test Board :	
Temperature cycling Resistance change rate is $\pm (1.0\% + 0.05\Omega)$ Max. $2 Room temp. 10\sim 1$ $3 +155^{\circ}C \pm 2^{\circ}C 30 min$ $4 Room temp. 10\sim 1$ 7.9 Resistance change after 1,000 hours (1.5 hours "on", 0.5 hour "off") at RCWV in a humidity chamber controlled at $40^{\circ}C \pm 2^{\circ}C and 90$ to 95 % relative humidity Resistance change rate is $\pm (3.0\% + 0.1\Omega)$ Max. Resistance change rate is $\pm (3.0\% + 0.1\Omega)$ Max. Resistance change rate is $\pm (3.0\% + 0.1\Omega)$ Max. Preminal Resistance change rate is $\pm (3.0\% + 0.1\Omega)$ Max. Resistance change rate is $\pm (3.0\% + 0.1\Omega)$ Max. Resistance change rate is $\pm (3.0\% + 0.1\Omega)$ Max. 4.25.1 Permanent resistance change after 1,000 operating at RCWV, with duty cycle of (1.5 hours"on", 0.5 hour"off") at 70°C ± 2°C at (1.5 hours"on", 0.5 hour"	
cycling $\pm (1.0\% + 0.05\Omega)$ Max. $\frac{2}{3}$ Room temp. $10\sim 1$ $\frac{3}{4}$ Room temp. $\frac{3}{4}$	ıe
$\frac{3}{4} + 155^{\circ}\text{C} \pm 2^{\circ}\text{C} \qquad 30 \text{ min} \\ \frac{4}{4} \qquad \text{Room temp.} \qquad 10 \sim 1$ $\frac{7.9 \text{ Resistance change after 1,000 hours}}{(1.5 \text{ hours "on", 0.5 hour "off") at RCWV}}$ $\frac{1}{4} \pm (3.0\% + 0.1\Omega) \text{ Max.} \qquad \frac{1}{4} + 155^{\circ}\text{C} \pm 2^{\circ}\text{C} \qquad 1000 \text{ hours}}{(1.5 \text{ hours "on", 0.5 hour "off") at RCWV}}$ $\frac{1}{4} \pm (3.0\% + 0.1\Omega) \text{ Max.} \qquad \frac{1}{4} + 155^{\circ}\text{C} \pm 2^{\circ}\text{C} \qquad 1000 \text{ hours}}{(1.5 \text{ hours "on", 0.5 hour "off") at RCWV}}$ $\frac{1}{4} \pm (3.0\% + 0.1\Omega) \text{ Max.} \qquad \frac{1}{4} + 155^{\circ}\text{C} \pm 2^{\circ}\text{C} \qquad 1000 \text{ hours}}{(1.5 \text{ hours "on", 0.5 hour"off") at 70^{\circ}\text{C}} \pm 2^{\circ}\text{C} \qquad 1000 \text{ hours}}$ $\frac{1}{4} \pm (3.0\% + 0.1\Omega) \text{ Max.} \qquad \frac{1}{4} + 155^{\circ}\text{C} \pm 2^{\circ}\text{C} \qquad 1000 \text{ hours}}{(1.5 \text{ hours "on", 0.5 hour"off") at 70^{\circ}\text{C}} \pm 2^{\circ}\text{C} \qquad 1000 \text{ hours}}$ $\frac{1}{4} \pm (3.0\% + 0.1\Omega) \text{ Max.} \qquad \frac{1}{4} + 155^{\circ}\text{C} \pm 2^{\circ}\text{C} \qquad 1000 \text{ hours}}{(1.5 \text{ hours"on", 0.5 hour"off") at 70^{\circ}\text{C}} \pm 2^{\circ}\text{C}} \qquad 1000 \text{ hours}}$ $\frac{1}{4} \pm (3.0\% + 0.1\Omega) \text{ Max.} \qquad \frac{1}{4} + 155^{\circ}\text{C} \pm 2^{\circ}\text{C} \qquad 1000 \text{ hours}}{(1.5 \text{ hours"on", 0.5 hour"off") at 70^{\circ}\text{C}} \pm 2^{\circ}\text{C}} \qquad 1000 \text{ hours}}{(1.5 \text{ hours"on", 0.5 hour"off") at 70^{\circ}\text{C}} \pm 2^{\circ}\text{C}} \qquad 1000 \text{ hours}}{(1.5 \text{ hours"on", 0.5 hour"off") at 70^{\circ}\text{C}} \pm 2^{\circ}\text{C}} \qquad 1000 \text{ hours}}{(1.5 \text{ hours"on", 0.5 hour"off") at 70^{\circ}\text{C}} \pm 2^{\circ}\text{C}} \qquad 1000 \text{ hours}}{(1.5 \text{ hours"on", 0.5 hour"off") at 70^{\circ}\text{C}} \pm 2^{\circ}\text{C}} \qquad 1000 \text{ hours}}{(1.5 \text{ hours"on", 0.5 hour"off") at 70^{\circ}\text{C}} \pm 2^{\circ}\text{C}} \qquad 1000 \text{ hours}}{(1.5 \text{ hours"on", 0.5 hour"off") at 70^{\circ}\text{C}} \pm 2^{\circ}\text{C}} \qquad 1000 \text{ hours}}{(1.5 \text{ hours"on", 0.5 hour"off") at 70^{\circ}\text{C}} \pm 2^{\circ}\text{C}} \qquad 1000 \text{ hours}}{(1.5 \text{ hours"on", 0.5 hour"off") at 70^{\circ}\text{C}} \pm 2^{\circ}\text{C}} \qquad 1000 \text{ hours}}{(1.5 \text{ hours"on", 0.5 hour"off") at 70^{\circ}\text{C}} \pm 2^{\circ}\text{C}} \qquad 1000 \text{ hours}}{(1.5 \text{ hours"on", 0.5 hour"off") at 70^{\circ}\text{C}} \pm 2^{\circ}\text{C}} \qquad 1000 \text{ hours}}{(1.5 \text{ hours"on", 0.5 hour"off") at 70^{\circ}\text{C}} \pm 2^{\circ}\text{C}} \qquad 1000 \text{ hours}}{(1.5 hours"on", 0.5 $	ns
$\frac{4 \text{Room temp.}}{10 \sim 1}$ Load life in Resistance change rate is $\pm (3.0\% + 0.1\Omega) \text{ Max.}$ $\frac{1.5 \text{ hours "on", 0.5 hour "off") at RCWV}{1.5 \text{ hours "on", 0.5 hour "off") at RCWV}}{1.5 \text{ hours "on", 0.5 hour "off"}}$ Resistance change rate is $\pm (3.0\% + 0.1\Omega) \text{ Max.}$ $\frac{4.25.1 \text{ Permanent resistance change after 1,000 operating at RCWV, with duty cycle of (1.5 hours"on", 0.5 hour"off") at 70°C \pm2°C at Terminal Resistance change rate is 4.33 \text{ Twist of Test Board :}$	5 mins
Terminal Resistance change rate is $\pm (3.0\% + 0.1\Omega) \text{ Max.}$ Resistance change rate is $\pm (3.0\% + 0.1\Omega) \text{ Max.}$ Resistance change rate is $\pm (3.0\% + 0.1\Omega) \text{ Max.}$ Resistance change rate is $\pm (3.0\% + 0.1\Omega) \text{ Max.}$ 4.25.1 Permanent resistance change after 1,000 operating at RCWV, with duty cycle of (1.5 hours"on", 0.5 hour"off") at 70°C \pm 2°C and	ns
Load life in humidity $\pm (3.0\% + 0.1\Omega)$ Max.	5 mins
humidity $\pm (3.0\% + 0.1\Omega)$ Max. in a humidity chamber controlled at $40^{\circ}\text{C} \pm 2^{\circ}\text{C}$ and 90 to 95 % relative humidity Resistance change rate is $\pm (3.0\% + 0.1\Omega)$ Max. $\pm (3.0\% + 0.1\Omega)$ Max. operating at RCWV, with duty cycle of $(1.5 \text{ hours"on"}, 0.5 \text{ hour"off"})$ at $70^{\circ}\text{C} \pm 2^{\circ}\text{C}$ at Terminal Resistance change rate is $\pm (3.3 \text{ Twist of Test Board})$	
humidity $\pm (3.0\% + 0.1\Omega)$ Max. in a humidity chamber controlled at $40^{\circ}\text{C} \pm 2^{\circ}\text{C}$ and 90 to 95 % relative humidity Resistance change rate is $\pm (3.0\% + 0.1\Omega)$ Max. $\pm (3.0\% + 0.1\Omega)$ Max. operating at RCWV, with duty cycle of (1.5 hours"on", 0.5 hour"off") at $70^{\circ}\text{C} \pm 2^{\circ}\text{C}$ at Terminal Resistance change rate is $\pm (3.0\% + 0.1\Omega)$ Resistance rate is $\pm (3.0\% + 0$	
$40^{\circ}\text{C} \pm 2^{\circ}\text{C} \text{ and } 90 \text{ to } 95 \text{ % relative humidity}$ $\text{Resistance change rate is} \qquad 4.25.1 \text{ Permanent resistance change after } 1,000 \text{ operating at RCWV, with duty cycle of } 1.5 \text{ hours"on", } 0.5 \text{ hour"off") at } 70^{\circ}\text{C} \pm 2^{\circ}\text{C} \text{ at } 1.000 \text{ operating at RCWV, with duty cycle of } 1.5 \text{ hours"on", } 0.5 \text{ hour"off") at } 70^{\circ}\text{C} \pm 2^{\circ}\text{C} \text{ at } 1.000 \text{ operating at RCWV, with duty cycle of } 1.5 \text{ hours"on", } 0.5 \text{ hour"off")} \text{ at } 70^{\circ}\text{C} \pm 2^{\circ}\text{C} \text{ at } 1.000 \text{ operating at RCWV, } 1.000 operating at $	
Load Life $\pm (3.0\% + 0.1\Omega)$ Max. operating at RCWV, with duty cycle of (1.5 hours"on", 0.5 hour"off") at 70° C $\pm 2^{\circ}$ C a Terminal Resistance change rate is 4.33 Twist of Test Board :	
$(1.5 \text{ hours"on"}, 0.5 \text{ hour"off"}) \text{ at } 70^{\circ}\text{C} \pm 2^{\circ}\text{C} \text{ a}$ Terminal Resistance change rate is $4.33 \text{ Twist of Test Board}:$	0 hours
Terminal Resistance change rate is 4.33 Twist of Test Board :	
	.mbient
bending $\pm (1.0\% + 0.05\Omega)$ Max. $Y/X = 3/90$ mm for 60 seconds	

8. Packing specification:

* Taping Dimension (mm)

Туре	$A \pm 0.2$	B ± 0.2	$C \pm 0.05$	φD+0.1	E ± 0.1	$F \pm 0.05$	$G \pm 0.1$	W ± 0.2	T ± 0.1	T ± 0.1
RMC 4D03	2.0	3.6	2.0	1.5	1.75	3.5	4.0	8.0	0.83	1.0

* Peeling Strength of Top Cover Tape

Test Condition: 0.1 to 0.7 N at a peel-off speed of 300 mm / min.

* Reel Dimension (mm)

Туре	Quantity Per Reel	$A \pm 0.5$	$B \pm 0.5$	$C \pm 0.5$	D ± 1	$M \pm 2$	W ± 1
RMC 4D03	5,000 pcs.	2	13	21	60	178	10

Part Number System Explanation of Part Number System (Thick Film Chip Resistor Array (Lead Free)) 1 2 3 4 5 6 4 D 0 3 W G **Packing Quantity:** Tolerance: 1 = 1,000pcs $F \sim \pm 1\%$ 2 = 2,000pcs J~ ± 5% 3 = 3,000pcs Resistance Value: 4 = 4,000 pcs1. E-24 series: the 1st digit is "0", 5 = 5,000pcs the 2nd & 3rd digits are for A = 500pcsthe significant figures of B = 2,500pcsProduct Type: Wattage: the resistance and the 4th C = 10,000pcs Fill-in these 4 Fill-in these 2 indicate the number of zeros D = 20,000 pcsdigits with the digits with the following; G = 25,000pcs H = 50,000 pcsChip resistor codes as follows: **2.** E-96 series: the 1st to 3rd digits types as follows: Normal size: are for the significant figures of 2D02 WG = 1/16Wthe resistance and the 4th digit 4D02 indicate the number of zeros 4D03 Special: following. 10P8 WH = 1/32WDecimal point is expressed: "**J**"~ 0.1,"**K**"~0.01,"**L**"~0.001 16P8 **Packing Type:** Ex: $2\Omega 26 \sim 226K$, $226\Omega \sim 2260$ T = T/R Packing B = Bulk in Poly-bagC = Bulk in cassette Special Feature: 0 = NILE = Lead FreeSample: RMC 1/16W (4D03) +/- 5% 10Ω T/R-5,000 \rightarrow 4D03WGJ0100T5E RMC 1/16W (4D03) +/- 1% 10Ω T/R-5,000 \rightarrow 4D03WGF100JT5E

Environment Related Substance

This product complies to EU RoHS directive, EU PAHs directive, EU PFOS directive and Halogen free.

Ozone layer depleting substances.

Ozone depleting substances are not used in our manufacturing process of this product.

This product is not manufactured using Chloro fluorocarbons (CFCs), Hydrochlorofluorocarbons (HCFCs),

Hydrobromofluorocarbons (HBFCs) or other ozone depleting substances in any phase of the manufacturing process.

Storage Condition

The performance of these products, including the solderability, is guaranteed for a year from the date of arrival at your company, provided that they remain packed as they were when delivered and stored at a temperature of $25^{\circ}\text{C} \pm 10^{\circ}\text{C}$ and a relative humidity of $60\%\text{RH} \pm 10\%\text{RH}$, chemical and dust free atmosphere

Even within the above guarantee periods, do not store these products in the following conditions. Otherwise, their electrical performance and/or solderability may be deteriorated, and the packaging materials (e.g. taping materials) may be deformed or deteriorated, resulting in mounting failures.

- 1. In salty air or in air with a high concentration of corrosive gas, such as Cl₂, H₂S, NH₃, SO₂, or NO₂
- 2. In direct sunlight

