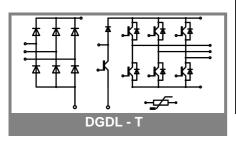
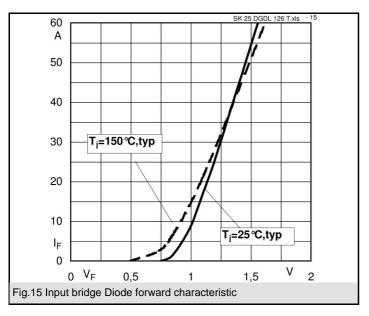


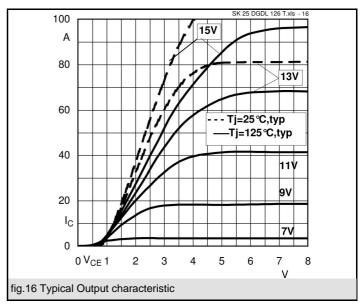
3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SK 25 DGDL 126 T

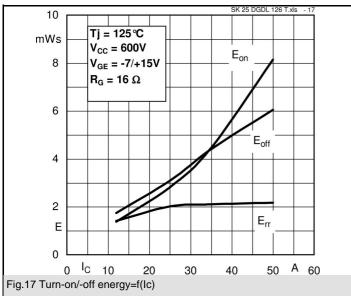

Preliminary Data

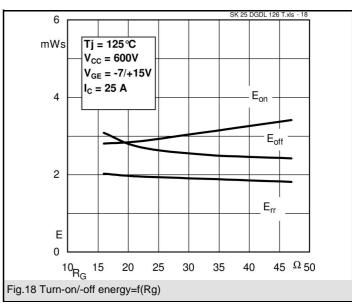
Features

- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology free-wheeling diode
- Integrated NTC temperature sensor

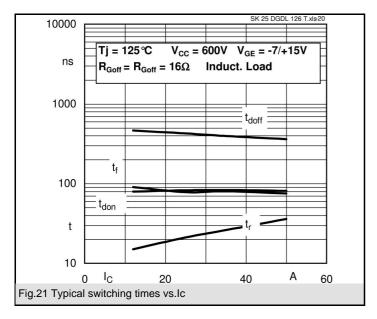

Typical Applications*

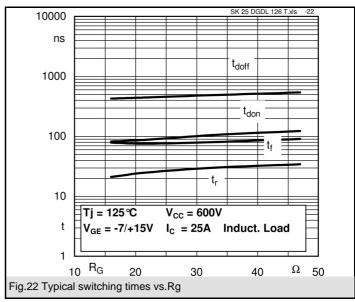

- Inverter up to 16 kVA
- Typ. motor power 7,5 kW
- 1) $V_{CE,sat}$, V_F = chip level value

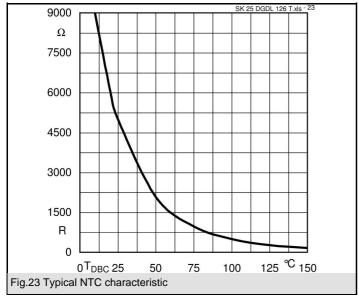


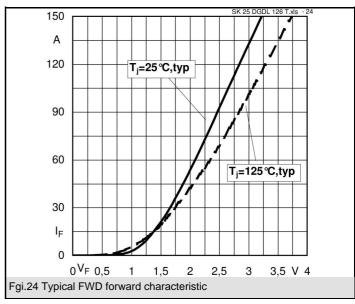

Absolute Maximum Ratings Ts = 25 °C, unless otherwise speci							
Symbol	Conditions	Values	Units				
IGBT - Inverter,Chopper							
V_{CES}		1200	V				
I _C	T _s = 25 (70) °C	41 (31)	Α				
I _{CRM}	$I_{CRM} = 2 \times I_{Cnom}, t_p = 1 \text{ ms}$	50	Α				
V_{GES}		± 20	V				
T _j		-40 + 150	°C				
Diode - Inverter, Chopper							
I _F	T _s = 25 (70) °C	30 (22)	Α				
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$	50	Α				
T _j	·	-40 + 150	°C				
Rectifier							
V_{RRM}		1600	V				
I _F	T _s = 70 °C	35	Α				
I _{FSM} / I _{TSM}	$t_p = 10 \text{ ms}$, sin 180 ° , $T_j = 25 \text{ °C}$	370	Α				
I ² t	$t_p = 10 \text{ ms}$, sin 180 °, $T_j = 25 \text{ °C}$	680	A²s				
T _j		-40 + 150	°C				
T _{sol}	Terminals, 10 s	260	°C				
T _{stg}		-40 +12 5	°C				
V _{isol}	AC, 1 min. / 1 s	2500 / 3000	V				

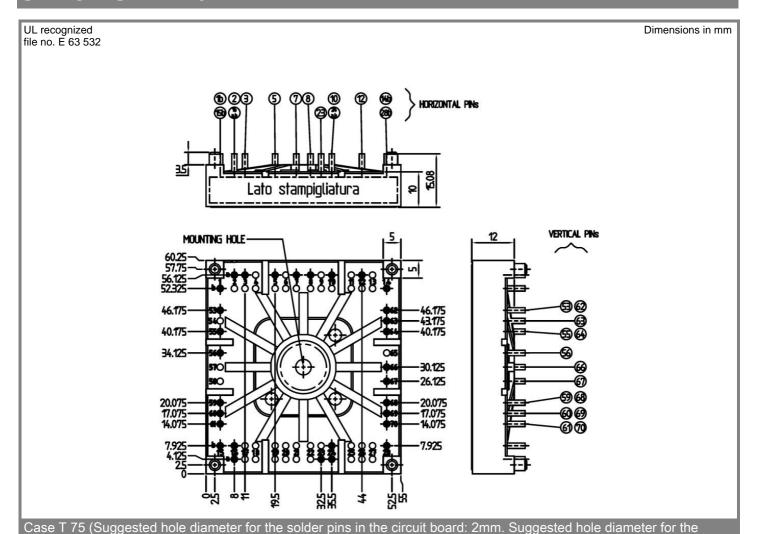
Character	ristics	s = 25 °C, unless otherwise specified							
Symbol	Conditions	min.	typ.	max.	Units				
IGBT - Inverter									
V _{CEsat}	$I_C = 25 \text{ A}, T_i = 25 (125) °C$		1,7 (2)	2,1 (2,4)	V				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 1 \text{ mA}$	5	5,8	6,5	V				
V _{CE(TO)}	T _j = 25 °C (125) °C		1 (0,9)	1,2 (1,1)	V				
r _T	T _j = 25 °C (125) °C		28 (44)	36 (52)	mΩ				
C _{ies}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		1,8		nF				
C _{oes}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		0,095		nF				
C _{res}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		0,082		nF				
$R_{th(j-s)}$	per IGBT		0,9		K/W				
t _{d(on)}	under following conditions		82		ns				
t _r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		21		ns				
t _{d(off)}	I _C = 25 A, T _j = 125 °C		426		ns				
t _f	$R_{Gon} = R_{Goff} = 16 \Omega$		78						
E _{on}	inductive load		2,8		mJ				
E_{off}			3,1		mJ				
Diode - Inverter, Chopper									
$V_F = V_{EC}$	I _F = 20 A, T _i = 25(125) °C		1,5 (1,55)	1,65 (1,7)	V				
$V_{(TO)}$	T _j = 25 °C (125) °C		1,15 (1,1)	1,25 (1,2)	V				
r _T	T _j = 25 °C (125) °C		17,5 (22,5)	20 (25)	mΩ				
$R_{th(j-s)}$	per diode		1,7		K/W				
I _{RRM}	under following conditions		25		Α				
Q_{rr}	I _F = 25 A, V _R = 300 V		5		μC				
E _{rr}	V _{GE} = 0 V, T _j = 125 °C		2		mJ				
	di _{F/dt} = 2100 A/µs								
Diode - Rectifier									
V_{F}	I _F = 25 A, T _i = 25() °C		1,1		V				
V _(TO)	T _i = 150 °C		0,8		V				
r _T	$T_{j} = 150 ^{\circ}\text{C}$		13		mΩ				
$R_{th(j-s)}$	per diode		1,5		K/W				
	Temperatur sensor								
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω				
Mechanical data									
w			60		g				
M_s	Mounting torque	2,5		2,75	Nm				

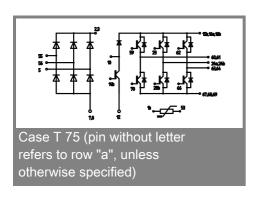












mounting pins in the circuit board: 3,6mm)

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.