

MiniSKiiP[®] 3

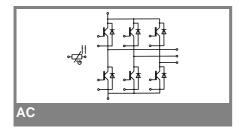
3-phase bridge inverter

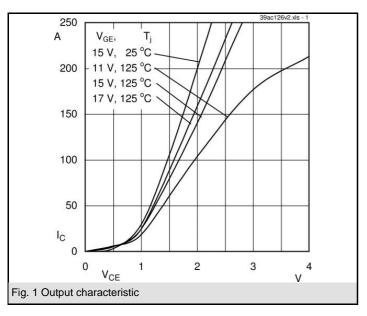
SKiiP 39AC126V2

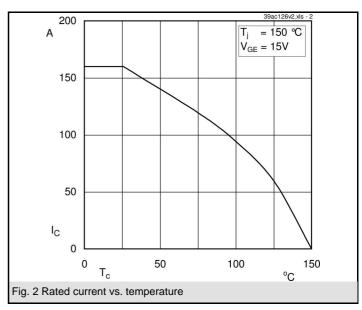
Features

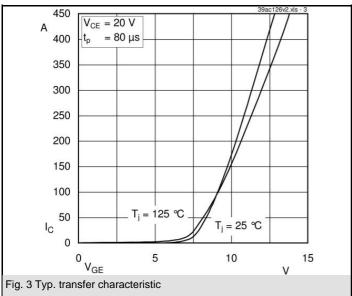
- Fast Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

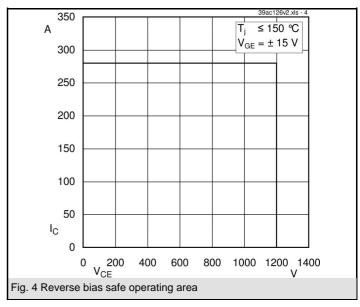
Typical Applications*

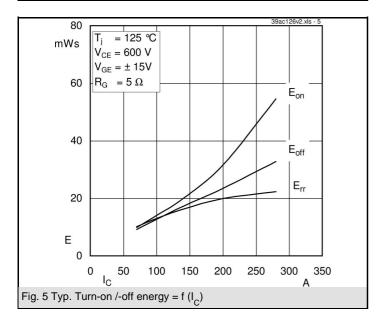

- Inverter up to 45 kVA
- Typical motor power 30 kW

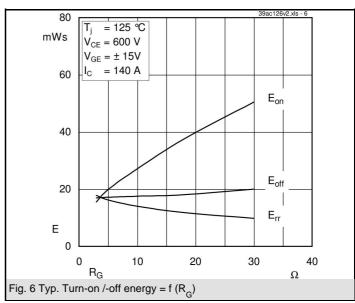

Remarks

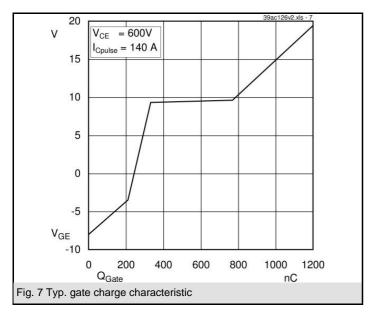

• V_{CEsat} , V_F= chip level value

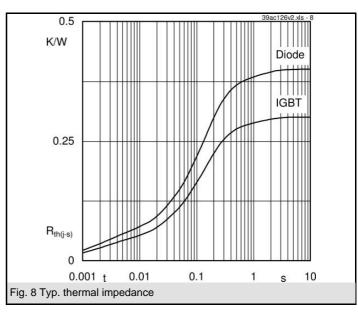

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise sp	ecified				
Symbol	Conditions	Values					
IGBT - Inverter							
V _{CES} I _C I _{CRM} V _{GES}	$T_s = 25 (70) ^{\circ}C$ $t_p \le 1 \text{ ms}$	1200 157 (118) 280 ± 20	V A A V				
T _j		- 40 + 150	°C				
Diode - Inverter							
I _F I _{FRM} T _j	$T_s = 25 (70) ^{\circ}\text{C}$ $t_p \le 1 \text{ms}$	167 (124) 280 - 40 + 150	A A °C				
${\rm I_{tRMS}\atop T_{stg}\atop V_{isol}}$	per power terminal (20 A / spring) $T_{op} \leq T_{stg}$ AC, 1 min.	160 - 40 + 125 2500	A °C V				

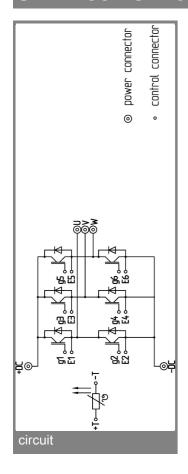

Character	istics	= 25 °C, unless otherwise specified						
	Conditions	min.	typ.	max.	Units			
-		111111.	ιyp.	IIIax.	Ullits			
IGBT - Inv V _{CEsat} V _{GE(th)} V _{CE(TO)} r _T C _{ies}	Figure 140 A, $T_j = 25 (125)$ °C $V_{GE} = V_{CE}$, $I_C = 6$ mA $T_j = 25 (125)$ °C $T_j = 25 (125)$ °C $V_{CE} = 25$ V, $V_{GE} = 0$ V, $f = 1$ MHz	5	1,7 (2) 5,8 1 (0,9) 5 (7,9) 11,2	2,1 (2,4) 6,5 1,2 (1,1) 6,4 (9,3)	V V V mΩ nF			
C _{oes} C _{res} R _{th(j-s)}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ per IGBT	1,9	1,9 1,5 0,3		nF nF K/W			
$\begin{array}{l} t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ E_{on} \end{array}$	under following conditions $\begin{aligned} &V_{CC} = 600 \text{ V}, \text{ V}_{GE} = \pm 15 \text{ V} \\ &I_{Cnom} = 140 \text{ A}, \text{ T}_{j} = 125 \text{ °C} \\ &R_{Gon} = R_{Goff} = 5 \Omega \\ &\text{inductive load} \end{aligned}$		80 40 500 100 19,9		ns ns ns ns mJ			
E _{off}			17,2		mJ			
Diode - Inverter								
$V_F = V_{EC}$ $V_{(TO)}$ r_T $R_{th(j-s)}$	I_{Fnom} = 140 A, T_j = 25 (125) °C T_j = 25 (125) °C T_j = 25 (125) °C per diode		1,5 (1,5) 1 (0,8) 3,6 (5) 0,4	,	V V mΩ K/W			
I _{RRM} Q _{rr} E _{rr}	under following conditions I_{Fnom} = 140 A, V_{R} = 600 V V_{GE} = 0 V, T_{j} = 125 °C di_{F}/dt = 4300 A/ μ s		210 38 16,2		Α μC mJ			
Temperature Sensor								
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω			
Mechanic m			95		g			
M_s	Mounting torque	2		2,5	Nm			

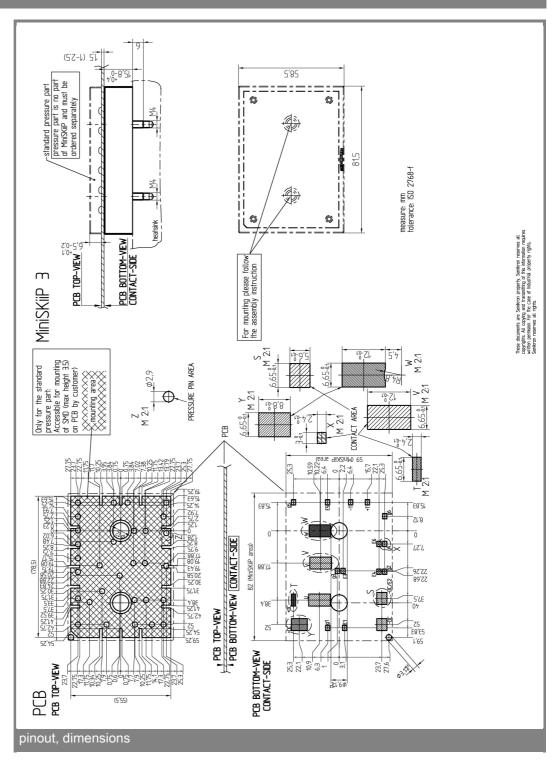












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.