

SEMITRANS[®] 4

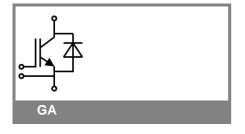
Trench IGBT Modules

SKM 600GA176D

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications*


- AC inverter drives mains 575 -790 V AC
- Public transport (auxiliary systems)

Remarks

- $I_{DC} \leq 500$ A limited for $T_{Terminal}$ = 100°C

Absolute Maximum Ratings T _{case} = 25°C, unless otherwise specific				
Symbol	-		Values	Units
IGBT				
V _{CES}	T _j = 25 °C		1700	V
I _C	T _j = 150 °C	T _c = 25 °C	660	Α
		T _c = 80 °C	470	А
I _{CRM}	I _{CRM} =2xI _{Cnom}		800	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 1200 V; $V_{GE} \le$ 20 V;	T _j = 125 °C	10	μs
	V _{CES} < 1700 V			
Inverse [Diode			
I _F	T _j = 150 °C	T _c = 25 °C	600	А
		T _c = 80 °C	410	А
I _{FRM}	I _{FRM} =2xI _{Fnom}		800	А
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	3800	А
Module				
I _{t(RMS)}			500	А
T _{vj}			- 40 +150	°C
T _{stg}			- 40 +125	°C
V _{isol}	AC, 1 min.		4000	V

Characteristics T _{case}			= 25°C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT	_		_				
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 16 \text{ mA}$		5,2	5,8	6,4	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			4	mA	
V _{CE0}		T _j = 25 °C		1	1,2	V	
		T _j = 125 °C		0,9	1,1	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		2,5	3,1	mΩ	
		T _j = 125°C		3,9	4,5	mΩ	
V _{CE(sat)}	I _{Cnom} = 400 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2	2,45	V	
		T _j = 125°C _{chiplev} .		2,45	2,9	V	
C _{ies}				28,4		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		1,46		nF	
C _{res}				1,17		nF	
t _{d(on)}				290		ns	
t,	R _{Gon} = 3 Ω	V _{CC} = 1200V		70		ns	
E _{on}		I _C = 400A		255		mJ	
t _{d(off)}	R _{Goff} = 3 Ω	T _j = 125 °C		890		ns	
t _f		$V_{GE} = \pm 15V$		160		ns	
E _{off}				155		mJ	
R _{th(j-c)}	per IGBT				0,044	K/W	

SEMITRANS[®] 4

Trench IGBT Modules

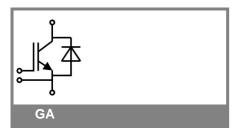
SKM 600GA176D

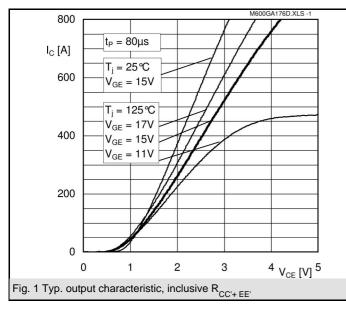
Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D	Diode						
$V_F = V_{EC}$	I_{Fnom} = 400 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,6	1,9	V	
		T _j = 125 °C _{chiplev.}		1,6	1,9	V	
V _{F0}		T _j = 25 °C		1,1	1,3	V	
r _F		T _j = 25 °C		1,3	1,5	mΩ	
I _{RRM}	I _F = 400 A	T _j = 125 °C		510		А	
Q _{rr}	di/dt = 5700 A/µs			155		μC	
E _{rr}	V _{GE} = -15V V; V _{CC} = 1200 V			102		mJ	
R _{th(j-c)D}	per diode				0,09	K/W	
Module							
L _{CE}				15	20	nH	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,18		mΩ	
		T _{case} = 125 °C		0,22		mΩ	
R _{th(c-s)}	per module				0,038	K/W	
M _s	to heat sink M6		3		5	Nm	
M _t	to terminals M6 (M4)		2,5 (1,1)		5 (2)	Nm	
w					330	g	

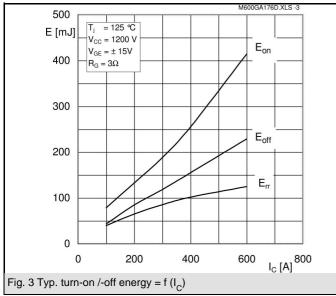
Features

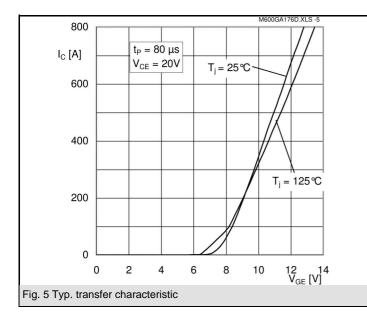
- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

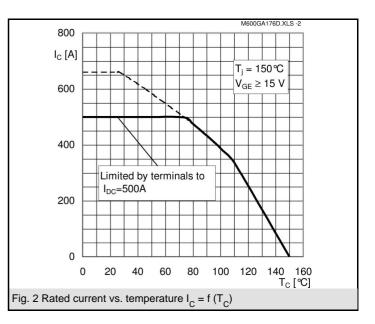
Typical Applications*

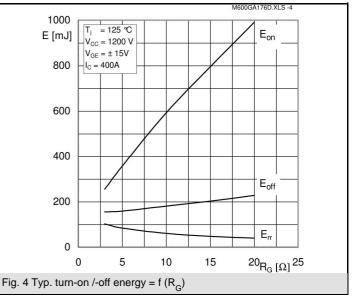

- AC inverter drives mains 575 -790 V AC
- Public transport (auxiliary systems)

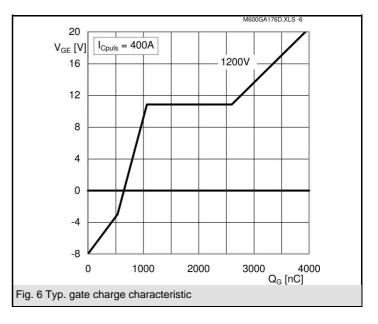

Remarks

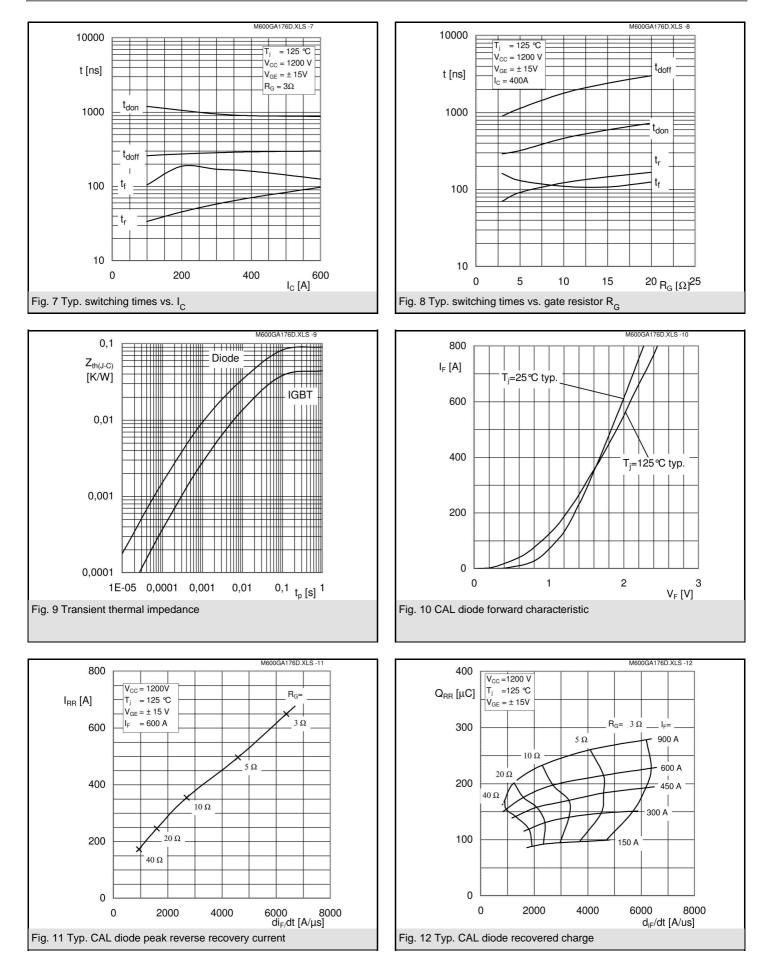

• $I_{DC} \le 500 \text{ A limited for } T_{Terminal} = 100^{\circ}C$

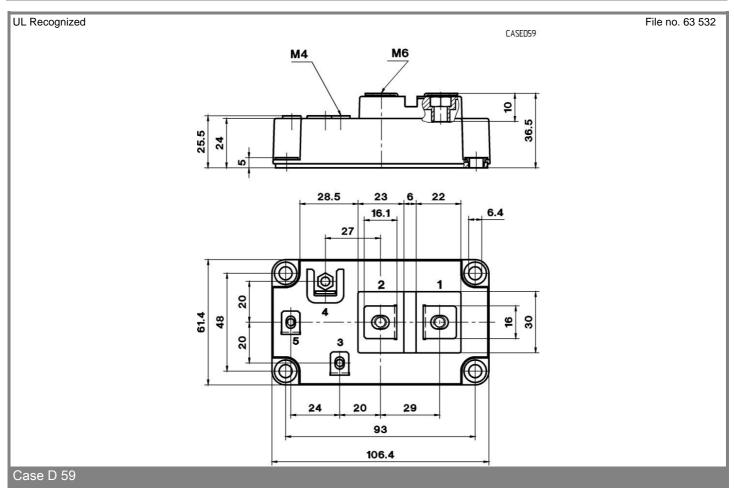

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

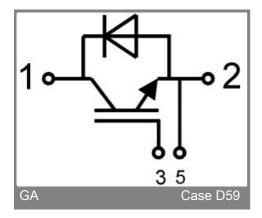

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.











28-06-2010 GIL

